Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 340-349, 2023.
Article in English | WPRIM | ID: wpr-999679

ABSTRACT

Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results sug-gest that Mad2B may be a critical modulator of DNA damage response.

SELECTION OF CITATIONS
SEARCH DETAIL